Button to scroll to the top of the page.

Updates

Campus health and safety are our top priorities. Get the latest from UT on COVID-19.

Get help with Zoom and more.

RUSSELL, RICK
No

Rick Russell

Professor
Molecular Biosciences


Structured and dynamic RNA and DNA

rick_russell@cm.utexas.edu

Phone: 512-471-1514

Office Location
MBB 2.212

Postal Address
2500 SPEEDWAY
AUSTIN, TX 78712

Ph.D., Johns Hopkins University (1997)
B.A., Earlham College (1991)

Research Interests

The Russell lab studies structured nucleic acids (RNAs and DNAs) and enzymes that interact with and manipulate these structures. Current research topics are:

RNA folding: How do structural elements interact to form complex, higher-order RNA structures?

RNA helicases: How do helicase proteins function to chaperone folding of RNAs?

CRISPR-Cas enzymes: How do CRISPR-Cas endonucleases target a specific DNA sequence by unwinding DNA to allow base pairing with a guide RNA?

RNA and DNA G-quadruplexes: How stable are these structures and how are they disrupted by specialized helicase proteins?

The Russell lab studies structured nucleic acids (RNAs and DNAs) and enzymes that interact with and manipulate these structures. Current research topics are:

RNA folding: How do structural elements interact to form complex, higher-order RNA structures?

RNA helicases: How do helicase proteins function to chaperone folding of RNAs?

CRISPR-Cas enzymes: How do CRISPR-Cas endonucleases target a specific DNA sequence by unwinding DNA to allow base pairing with a guide RNA?

G-quadruplexes: How stable are these structures and how are they disrupted by specialized RNA helicase proteins?

Representative Publications

Strohkendl, I., Saifudden, F.A., Gibson, B.A., Rosen, M.K., Russell, R., Finkelstein, I.J. (2021) Inhibition of CRISPR-Cas12a targeting by nucleosomes and chromatin. Science Advances, 7: eabd6030

Chang-Gu, B., and Russell, R. (2021) The DHX36-specific-motif (DSM) enhances specificity by accelerating recruitment of DNA G-quadruplex structures. Biol Chem, 402: 593-604

Jarmoskaite, I., Tijerina, P., and Russell, R. (2020) ATP utilization by a DEAD-box protein during refolding of a misfolded group I intron ribozyme. J Biol Chem, 296: 100132. Selected by the journal as Editors’ pick

Lentzsch, A.M., Yao, J., Russell, R., and Lambowitz, A.M. (2019) Template-switching mechanism of a group II intron-encoded reverse transcriptase and its implications for biological function and RNA-seq. J Biol Chem294, 19764-19784. Selected by the journal as Editors’ pick

Strohkendl, I., Saifudden, F., Rybarski, J.R., Finkelstein, I.J., and Russell, R. (2018) Kinetic basis for DNA target specificity of CRISPR-Cas12a. Molecular Cell 71, 816-824.

Gracia, B., Al-Hashimi, H.M., Bisaria, N., Das, R., Herschlag, D., and Russell, R. (2018) Hidden structural modules in a cooperative RNA folding transition. Cell Reports 22, 3240-3250

Yangyuoru, P.M., Bradburn, D.A., Liu, Z., Xiao, T.S., and Russell, R. (2018) DHX36 disrupts DNA G-quadruplexes with high efficiency and specificity using a translocation-based helicase mechanism. J Biol Chem 293, 1924-1932.

Gilman, B., Tijerina, P., and Russell, R. (2017) Distinct RNA unwinding mechanisms of DEAD-box and DEAH-box RNA helicase proteins in remodeling structured RNAs and RNPs. Biochem Soc Trans 45, 1313-1321.

Busa, V.F., Rector, M.J., and Russell, R. (2017) The DEAD-box protein CYT-19 uses arginine residues in its C-tail to tether RNA substrates. Biochemistry 56, 3571-3578.

Gracia, B., Xue, Y., Bisaria, N., Herschlag, D., Al-Hashimi, H.M., and Russell, R. (2016) Modulation of local RNA folding allows control of RNA assembly pathway and rate. Mol Biol 428, 3972-3985.

Cannon, B., Kachroo, A., Jayaram, M., and Russell, R. (2015) Hexapeptides that inhibit processing of branched DNA structures induce a dynamic ensemble of Holliday junction conformations. J. Biol. Chem. 290, 22734-46.

Pan, C., Potratz, J.P., Cannon, B., Simpson, Z.B., Ziehr, J., Tijerina, P., and Russell, R. (2014) DEAD-box helicase proteins disrupt RNA tertiary structure through helix capture. PLOS Biology 12(10):e1001981.

 Jarmoskaite, I., Bhaskaran, H., Seifert, S., and Russell, R. (2014) DEAD-box protein CYT-19 is activated by exposed helices in a group I intron RNA. Proc. Natl. Acad. Sci. U.S.A. 111, E2928-36.

Jarmoskaite, I, and Russell, R. (2014) RNA helicase proteins as chaperones and remodelers. Ann. Rev. Biochem. 83, 697-725.

Mitchell, D., and Russell, R. (2014) Folding pathways of the Tetrahymena ribozyme. J. Mol. Biol., 426, 2300-2312.

Mitchell, D., Jarmoskaite, I., Seval, N., Seifert, S., and Russell R. (2013) The long-range P3 helix of the Tetrahymena ribozyme is disrupted during folding between the native and misfolded conformations. J. Mol. Biol. 425, 2670-2686.

Cannon, B., Kuhnlein, J., Yang, S.H., Cheng, A., Stark, J.M., Russell, R., and Paull, T.T. (2013) Visualization of local DNA unwinding by MRN using single molecule FRET. Proc. Natl. Acad. Sci. U.S.A., 110, 18868-11873.

Potratz, J.P., Del Campo, M., Wolf, R.Z., Lambowitz, A.M., and Russell, R. (2011) ATP-dependent roles of the DEAD-box protein Mss116p in group II intron splicing in vitro and in vivo. J. Mol. Biol. 411, 661-679.

Wan, Y., and Russell, R. (2011) Enhanced specificity against misfolding in a thermostable mutant of the Tetrahymena ribozyme. Biochemistry 50, 864-874.

Jarmoskaite, I., and Russell, R. (2011) DEAD-box proteins as RNA helicases and RNA chaperones. WIREs: RNA 2, 135-152.

Pan, C., and Russell, R. (2010) Roles of DEAD-box Proteins in RNA and RNP Folding. RNA Biol. 7, 28-37.

Wan, Y., Suh, H., Russell, R., and Herschlag, D. (2010) Multiple unfolding events during folding of the Tetrahymena group I ribozyme. J. Mol. Biol. 400, 1067-1077.

Chadee, A.B., Bhaskaran, H., and Russell, R. (2010) Protein roles in group I intron RNA folding: The tyrosyl-tRNA synthetase CYT-18 stabilizes the native state relative to a long-lived misfolded structure without compromising folding kinetics. J. Mol. Biol. 395, 656-670.

Chen, Y., Potratz, J.P., Tijerina, P., Del Campo, M., Lambowitz, A.M., and Russell, R. (2008) DEAD-box proteins can completely separate an RNA duplex using a single ATP. Proc. Natl. Acad. Sci. U.S.A. 105, 20203-20208.

Bhaskaran, H., and Russell, R. (2007) Kinetic redistribution of native and misfolded RNAs by a DEAD-box chaperone. Nature 449, 1014-1018.

Del Campo, M., Tijerina, P., Bhaskaran, H., Mohr, S., Yang, Q., Jankowsky, E., Russell, R., and Lambowitz, A.M. (2007) Do DEAD-box proteins promote group II intron splicing without unwinding RNA? Molecular Cell 28, 159-166.

Tijerina, P., Mohr, S., and Russell, R. (2007) DMS footprinting of structured RNAs and RNA-protein complexes. Nature Protocols 2, 2608-23.